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Introduction

Dynamics in the short time (sub-ps) is governed by non adiabatic
couplings. Dynamics in the excited states.

Following this electronic relaxation, the molecule can be found in the
fundamental electronic state.

In this course, we will focalize on the competition between different
relaxation processes, may be sequential, of the system in this ground
electronic state:

• Dissociation
• Isomerisation
• IR Emission

Following dynamics of a molecular system over a long time is really a
challenge both for experimentalists and theoreticians.
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Introduction

”Complex” molecular systems have some common properties:

Potential Energy Surface (PES ) is characterized by a large number
of local minima (isomers) and extrema (saddle points).

Anharmonicity of the PES

Characteristics times of different processes on different orders of
magnitude [coexistence of short time (ps-ns) and long time (ms-s)
dynamics].

Molecular system with a large number of freedom. Difficult to follow
the time evolution by solving Schrödinger equation.
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Introduction

Born-Oppenheimer adiabatic approximation is generally used to compute
electronic states.

The molecular hamiltonian can be written as:

H = T (p) + T (P) + U(r,R) (1)

In this expression, r is the set of the electronic coordinates, R is the
set of the nuclear coordinates. p and P are the momenta linked to r

and R, respectively.
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Introduction

As the nuclei masses are larger of electrons, the electronic

wavefunctions ϕ
(n)
e (r;R) can be computed by fixing molecular

geometry (adiabatic approximation).

These electronic wave functions depend parametrically on the nuclear
positions. For each value of R, the schrödinger equation is solved:

[T (p) + U(r,R)] ϕ
(n)
e (r;R) = Vn(R) ϕ

(n)
e (r;R) (2)
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Introduction

The function Vn(R) corresponds to the electronic energy for the nème

adiabatic electronic state.

For each electronic state, we will have a function of whole of the
nuclear coordinates called Potential Energy Surface (PES).

By the following, we will work on the ground PES V (R).

At the vicinity of a local minimum Re , the PES can be expressed as:

V (R) = V (Re) + (R− Re)
t Hh (R− Re) + ...

with Hh the Hessian matrix.

On this PES, classical dynamics of the nuclei can be simulated.
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Introduction

Different methods can be used for the calculation of the PES
V (~R1, ...., ~Rn):

1 Atomistic model

ab-initio PES. Based on the calculation of the electronic wavefunction
(or the electronic density).
Semi-empirical PES (TB, DFTB, ...)
Non reactive empirical PES (AMBER, CHARMM, ...)
Reactive empirical PES (AIREBO, REAX)

2 Coarse grained model

This choice will be mainly governed by:

The size and the nature of the molecular system
The characteristics time of the microscopic phenomena
The quality of the PES sampling
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Introduction

Figure: An example of Potential energy surface.
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Introduction

Why exploring this PES ?

Important to find local minima and extrema which play a crucial role in
the dynamics.
Following the time evolution of a given physical observable versus of E,
T, ...
Understanding thermodynamics of the system ...
Understanding the reactional dynamics along a given path λ(R).

How to properly explore this PES ?

Exploration of the phase space. Dynamics in the (NVE), (NVT)
statistical ensembles, ... Time average of physical observables.
Exploration of the configuration space in different statistical ensembles.
Ensemble average of physical observables.

Problem of ergodicity .... → Numerical strategies to follow.
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Introduction

Molecular dynamics simulations in the (NVE) ensemble
1 Propagation of Hamilton’s equations

(R(t),P(t))

2 Perfectly adapted to follow the time evolution of physical properties as
a function of time

A(t) ≡ A(R(t)) et 〈A〉t =
1

N

N
∑

i=1

A(ti )

3 Allow to compute rate constants for different processes (isomerisation,
dissociation, ...) from different initial conditions.

But ...

The gradient of the PES has to be computed.

Difficult to extract information on rare events and/or for systems with
N ≫ 1. The accessible characteristics times depend on the
complexity of the PES.
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Competition between isomerization, fragmentation and IR

emission

| 2〉

| 1〉

| 0〉

UV-visible
excitation

IC Dissociation

fragment 1

fragment 2

fragment 3
IR Emission

and

Isomerization
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Fragmentation

Fragmentation
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Introduction

Following the non-adiabatic dynamics, the molecule can be found in
the electronic ground state. A statistical approach could be used if
TIVR ≪ Tdisso.

The characteristics time of dissociation Tdisso will depend on:

Internal energy (or temperature)
Dissociation energy
The number of degrees of freedom

In the framework of statistical theories, the density of states will
naturally play an important role.
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RRK theory

One simple model for a molecular dissociation of the parent Xn (→
Xn−1+X) is to consider Xn as a set of harmonic oscillators, following
the idea of Rice, Ramsperger et Kassel. The molecule will be
considered as dissociated when the localized energy on a given mode
will be larger than the dissociation energy.

We note g = 3n − 6 the number of degrees of freedom of the parent
molecule. Let us computing the probability P(E ) for that E to be
localized in a dissociative mode, will be larger than the dissociation
energy Dn.

The number of possibilities to distribute E over g oscillators is given
by E g−1/(g − 1)!.
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RRK theory
The probability P(E ) is thus given by:

P(E ) =

∫ E−Dn

0 ǫg−2dǫ/(g − 2)!

E g−1/(g − 1)!

=

(

E − Dn

E

)g−1

(3)

The dissociation constant k
(n)
d (E ) is proportional to this probability.

We thus obtain:

kd (E ) = ν0

(

E − Dn

E

)g−1

(4)

The ν0 prefactor is generally fitted to reproduce experimental results.
Only the reactant is taken into account in this approach.

Kassel has proposed a quantal version, much more adapted for small
systems and/or at low energy.
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RRKM Theory

Notion of transition state.

Separation between nuclear and electronic degrees of freedom. Nuclear
dynamics on a PES.
There is a critical surface which separates reactant and produit.
Hypothesis of ”non retour”.

In this approach, the dissociation rate is directly linked to the flux of
trajectories through the critical surface. One of the major difficulty is
to properly localize the transition state.

Also based on the quasi-equilibrium hypothesis:

Energy redistribution much more rapid than the dissociation reaction.
Separability at the transition state: 1 dissociation coordinate +
spectator modes.
Energy equipartition in the spectator modes at the transition state.
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RRKM Theory

We note Dn the energy of the transition state. We note v the
derivative with respect time of the reaction coordinate at the TS. It
thus simply corresponds to the velocity at the TS.

We note E
†
t the kinetic energy along the reaction coordinate at the

TS.

The RRKM dissociation constant can be written:

kd (E ) ∝ v
Ω†(E †)

Ωn(E )
(5)

with E † = E − Dn the energy available at the transition state.
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RRKM Theory

The density of states Ω† at the transition state is written as:

Ω†(E †) =
∑

N(E †
v )ρ(E

†
t ) (6)

As ρ(E †
t ) ∝ E

†
t
−1/2 and v ∝

√

E
†
t , we obtain:

kd (E ) ∝
N†(E )

hΩn(E )
(7)

with N†(E ) =
∑

N(E †
v ) the number of vibrational states for the

spectator modes which can be populated at the TS.
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RRKM theory

For a system with a large number of degrees of freedom, we can write:

N†(E ) =

∫ E−Dn

0
Ω†(E − Dn − ε) dε (8)

The RRKM dissociation rate can be written as:

kd (E ) =

∫ E−Dn

0
R(ε;E ) dε (9)

with,

R(ε;E ) =
Ω†(E − Dn − ε)

hΩn(E )
(10)

R(ε;E )dε corresponds to the dissociation rate for a given kinetic
energy ε along the dissociative coordinate.
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RRKM theory

The probability density for the kinetic energy can be deduced:

f (ε;E ) =
Ω†(E − Dn − ε)

∫ E−Dn

0 Ω†(E − Dn − ε)dε
(11)

In the harmonic limit of the RRK theory, we find:

kd (E ) =

∏3n−6
i=1 νi

∏3n−7
i=1 ν†i

(
E − Dn

E
)3n−7 (12)

The averaged kinetic energy is thus given by:

〈ε〉 =

∫ E−Dn

0
ε f (ε)dε

=
E − Dn

3n − 6
(13)
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Weisskopf theory

The RRK(M) theories only consider the dissociation with respect to
the ”parent” molecule.

The Weisskopf theory is based on the microreversibility principle. An
equilibrium between the two inverse microscopic processes
(dissociation and nucleation) is assumed:

Xn −→ Xn−1 +X and Xn−1 +X −→ Xn (14)

This theory has been first developed to describe the fragmentation of
nuclei (nuclear physics).
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Weisskopf theory

We note kd the dissociation rate for the reaction Xn −→ Xn−1 +X.

We note kn the nucleation rate for the reaction Xn−1 +X −→ Xn.

The flux Φd linked to the dissociation is equal to Φd = kd [Xn].

The flux Φn linked to the nucleation is equal to Φn = kn[Xn−1].

From he microreversibility principle, we have Φd = Φn.

Let us express Φd . We have:

Φd = kd (E )Ωn(E ) (15)

with Ωn the vibrational density of states for the parent Xn.
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Weisskopf theory

Let us now express Φn. We have:

Φn =

∫ E−Dn

0
kn(ε) ρ(ε)Ωn−1(E − Dn − ε)dε (16)

In this last equation, Ωn−1 is the vibrational states density of the
product Xn−1. The relative kinetic energy of the fragments is noted ε.
The nucleation rate kn(ε) is proportional to the nucleation
cross-section σ(ε) and to v , the relative velocity of the fragments.
We thus obtain:

kn(ε) ∝ v σ(ε)

∝ ε1/2 σ(ε) (17)

ρ(ε) (∝ ε1/2) is the density of translational states.
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Weisskopf theory

We thus obtain:

kd (E ) ∝

∫ E−Dn

0 ε σ(ε)Ωn−1(E − Dn − ε)dε

Ωn(E )
(18)

The kinetic energy (ε) probability density is written as:

f (ε;E ) =
ε σ(ε)Ωn−1(E − Dn − ε)

∫ E−Dn

0 ε σ(ε)Ωn−1(E − Dn − ε)dε
(19)

This model is generally used in the approximation of a cross-section
independent of the kinetic energy (hard sphere model).
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Weisskopf theory

In this case and considering harmonic vibrational density of states, we
obtain:

kd (E ) ∝
(E − Dn)

3n−8

E 3n−7
(20)

and,

f (ε;E ) = (3n − 8)(3n − 9)
ε(E −Dn − ε)3n−10

(E − Dn)3n−8
(21)

We thus deduce the expression of the averaged released kinetic
energy:

〈ε〉 =
2 (E − Dn)

3n − 7
(22)
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Phase space theory

The Phase Space Theory (PST) has been developed for the molecular
physics by J. Light from the microreversibility principle.

In the PST approach, conservation of the angular momentum is now
taken into account:

~J = ~J ′ + ~l (23)

In the PST approach, the potential energy barrier along the
dissociation coordinate is localized at the centrifugal barrier.
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Phase space theory

Let us onsider the dissociation of a molecule with an internal energy
E and an angular momentum J.

The microreversibility principle égalise les flux sortant Φ(E , J) and
Φ′(E , J) fluxes of dissociation and nucleation processes, respectively.

The dissociation flux Φ is equal to the product of the dissociation rate
kd by the vibrational density of states Ωn for the ”parent” molecule.
Srot is added for the rotational degeneracy of the ”parent” molecule:

Φ(E , J) = k(E , J)Srot Ωn(E − Erot) (24)

In the spherical top approximation, the rotational energy of the
”parent” molecule” is given by Erot = B J2, with B the rotational
constant.
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Phase space theory

Consider now the nucleation process. The flux Φ′ depends on
translational and rotational energies:

Φ′(E − Dn, J) = S ′
rot

∫∫

k ′(εr, εt; J)ρt(εt) dεt

× Ωn−1(E − Dn − εt − εr) dεr (25)

In this expression, S ′
rot corresponds to the rotational degereracy for

the dissociation products. ρt(εt) is the translational density of states.
k ′(εr, εt; J) is the differential rate for that collision forms a cluster
with an angular momentum J with kinetic energies εr and εt.
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Phase space theory

We obtain the expression of the differential rate of dissociation as a
function of the total released kinetic energy εtr = εt + εr:

R(εtr;E , J) =
S ′
rot

Srot

Ωn−1(E − Dn − εtr) Γrot(εtr, J)

Ωn(E − Erot)
. (26)

In this equation, the rotational density of states Γrot corresponds to
the number of available rotational states for given values of J and εtr.
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Phase space theory

We can deduce the expression of the probability density for εtr as:

f (εtr;E , J) =
R(εtr;E , J)

∫ E−Dn

ε
(min)
tr

R(εtr;E , J) dεtr

=
Ωn−1(E − Dn − εtr) Γrot(εtr, J)

∫ E−Dn

ε
(min)
tr

Ωn−1(E − Dn − εtr) Γrot(εtr, J) dεtr
(27)

We have to compute Γrot(εtr, J) and ε
(min)
tr by taking into account

constraints linked to energy and angular momentum.

In the PST approach, we can also obtain the distributions f (εt;E , J)
and f (Jr ;E , J).
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cluster KrXe12

Competition entre
ejection of Kr and Xe

-45 -40 -35 -30 -25
Energy

20

40

60

80

100

p
K

r 

PST; harmonic
PST; HSA
PST; anharmonic
MD
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Mixed Lennard-Jones
KrXe12 clusters
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Isomerization

Isomerization
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Transition state theory

The isomerization rate constant from isomer i towards isomer j, noted

k
(tij )
i→j , dépends on the statistical properties of isomer i and of the
saddle point which connects both isomers.

This isomerization rate constant can be written as:

k
(tij )
i→j (E ) =

1

h

N(tij )(E )

Ωi(E )
(28)

In this expression, N(tij )(E ) corresponds to the number of available
states at energy E for the transition state. N(tij ) is given by:

N(tij )(E ) =

∫ E

V
(tij )

Ω(tij )(ǫ)dǫ (29)

withV (tij) the potential energy of the saddle point and Ω(tij )(ǫ) the
density of states for the transition state at the energy ǫ.
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Transition state theory

Energy

E

V (tij )
Transition state tij

Isomer i

Isomer j

Reaction coordinate
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Transition state theory

The isomerization rate from isomer j towards isomer i, noted k
(tij )
j→i , is

written as:

k
(tij )
j→i (E ) =

1

h

N(tij )(E )

Ωj(E )
(30)

The equilibrium between these two isomers can be easily deduced.
The population ratio, for a microcanonical energy E , is given by:

Ni

Nj

=
k
(tij )
j→i (E )

k
(tij )
i→j (E )

=
Ωi(E )

Ωj(E )
(31)

This ratio is independent of the transition state.
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Transition state theory

The transition state linked to two isomers will be a saddle point of
the PES.

We note {Q(e)} the molecular geometry at the saddle point. In the
vicinity of this saddle point, we can express the potential energy as:

V ({Q}) = V ({Q(e)}) +
1

2!

∑

i

λi(Qi − Q
(e)
i )2 (32)

We will have (g-1) positive eigenvalues and one negative, noted λα.
We note ~uα the eigenvector associated to the negative eigenvalue.

Parallel and anti-parallel displacements to this eigenvector and we
minimize the PES to find the two local minima locaux linked to this
saddle point.
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Transition state theory

In the harmonic limit, Ωi(E ) s given by:

Ωi(E ) =
E g−1

(g − 1)!(hν(i))g
(33)

with ν(i) the geometrical average of the vibrational frequencies for

isomer i, defined as hν(i) = {

g
∏

k=1

hν
(i)
k }1/g .

For the transition state, N(tij )(E ) is given by:

Ntij (E ) =

∫ E

V
(tij )

ǫg−2

(g − 2)!(hν(tij))g−1
dǫ (34)

As different transition states can connect two same isomers, we have:

Wij(E ) =
∑

tij

k
(tij )
ij (E ) (35)
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Isomerization dynamics

From the W̃ matrix, we can easily build the master equations
allowing to describe isomerization for a large molecular system with a
large number of isomers and saddle points.

We note Pi (t;E ) the probability for the system to be in isomer i at t.
The equations of evolution for the system can be written as:

dPi(t;E )

dt
=

Niso
∑

j=1

ωij(E )Pj (t;E ) (36)

with ωij(E ) = Wij(E )− δij
∑

k 6=j

Wkj(E ). The total number of isomers

is noted Niso.

By numerically solving this system of coupled equations, it allows to
obtain time evolution of populations Pi(t;E ).
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Isomerization dynamics

In these molecular systems, the number of isomers can become very
huge. It is thus much more useful to follow the time evolution of
isomers groups.

These isomers have to be classified in these groups following different
geometrical criteria (order parameters).

Notons A et B two isomers groups with NA and NB their respective
populations.

We note Keq the equilibrium between these two groups. We have:

Keq =
kB→A

kA→B

=
NA(∞)

NB(∞)
(37)

with kA→B the isomerization rate from A towards B and kB→A from
B towards A.
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Isomerization dynamics

A

B

λ1

λ2

The configurational parameters λi ({Q}) have to be chosen to well
separate the isomers bassins.
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Isomerization dynamics

Let us calculate the isomerization constant kA→B .

We have:

dNA

dt
= −kA→BNA + kB→ANB (38)

Let us note N = NA + NB . We deduce:

dNA

dt
= −(1 + Keq)kA→BNA + KeqkA→BN (39)

We note k = (1 + Keq) kA→B and we obtain:

NA(t)

N
= [

NA(t = 0)

N
−

Keq

1 + Keq

]e−kt +
Keq

1 + Keq

(40)

In this expression, Keq is given by the ratio of vibrational states for
the two bassins A and B .
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Isomerization dynamics

By solving the master equation, we obtain Pi(t) =
Ni (t)
N

for i=1, Niso

and we thus obtain:

NA(t)

N
=

N
(A)
iso

∑

i=1

Pi(t) (41)

in which N
(A)
iso correspond to the number of isomers in the bassin A.

The rate constant k [=(1 + Keq) kA→B ] can be thus deduced from a
simple comparison of the two last expressions.
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Isomerization dynamics

As an example, we can analyse theoretical results on Mg+-Ar12.

Question: where is localized the Mg+ ion (surface or volume) ?
Analysis as a function of internal energy.

83 local minima and 137 saddle points have been considered in this
work.

Separation between the two isomer groups A (ion in volume) and B

(ion at the surface) is based on the value of distance between the ion
and the center of mass of the system for each isomer.

We note dα this distance for isomer α. If dα < Rcrit, the isomer α is
considered in the group A.
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Isomerization dynamics
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Pascal Parneix (ISMO) École d’été GDR EMIE et UP August 28, 2019 46 / 62



Isomerization dynamics - Canonical
ensemble

In the transition state theory, the rate constant from isomer i to
isomer j, at a given inverse temperature β, can be deduced from a
Laplace transformation:

k
(tij )
i→j (β) =

1

Zi(β)

∫ ∞

0
Ωi(E ) k

(tij )
i→j (E ) e

−βE dE

=
1

Zi(β)

1

h

∫ ∞

0
Ωi (E )

N(tij )(E )

Ωi(E )
e−βE dE

=
1

h

∫∞

0 N(tij )(E ) e−βE dE

Zi(β)
(42)
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Isomerization dynamics - Canonical
ensemble

As N(tij )(E ) = 0 when E ≤ V tij , we obtain:

k
(tij )
i→j (β) =

1

h

∫∞

V
(tij ) N

(tij )(E ) e−βE dE

Zi(β)
(43)

From an integration by parts, we obtain:

k
(tij )
i→j (β) =

−1

hβ

[N(tij )(E ) e−βE ]∞
V

tij
−
∫∞

V
tij

dN
(tij )(E)
dE

e−βE dE

Zi(β)

=
1

hβ

∫∞

V
(tij )

dN
(tij )(E)
dE

e−βE dE

Zi(β)
(44)
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Isomerization dynamics - Canonical
ensemble

By definition, dN
(tij )(E)
dE

= Ω(tij )(E ). We deduce:

k
(tij )
i→j (β) =

1

hβ

∫∞

V
(tij ) Ω

(tij )(E ) e−βE dE

Zi(β)

=
1

hβ

Z (tij)(β)

Zi(β)
(45)

with Z (tij)(β) the partition function for the saddle point at β.

In this last expression, the zero of energy is taken for the isomer i.
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IR Emission

IR Emission
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Absorption cross-section for an oscillator

In the case of E1 transitions, the radiative transition probability
between two vibrational states | n〉 et | n′〉 is proportional to the
transition moment | 〈n | µ | n′〉 |2.

The dipole moment µ depends on the normal coordinate Q and can
be expressed as:

µ(Q) = µ(Q = 0) +
∑

k

1

k!

∂kµ

∂Qk
Qk (46)

In the harmonic approximation, the vibrational wavefunction fonctions
are the Hermite polynômes . By only considering the first term in the
expression of the dipole moment, we obtain:

| 〈n | µ | n + 1〉 |2= (n + 1) | 〈0 | µ | 1〉 |2 (47)

Pascal Parneix (ISMO) École d’été GDR EMIE et UP August 28, 2019 51 / 62



Microcanonical distribution P(ni ;E )

Let us calculate the probabilityP(ni ;E ) to have ni vibrational quanta
in the i ème mode at energy E .

The energy E − ni~ωi has to be shared on the (g − 1) other
vibrational modes.

We note Ω′
i(E ) the vibrational density of states for these (g-1)

harmonic oscillators. The number of vibrational modes between E

and E+dE is equal to Ω′
i(E )dE .

The probability P(ni ;E ) is thus given by:

P(ni ;E ) =
Ω′
i(E − ni~ωi )

Ω(E )
(48)

For a given energy, the probability P(ni ;E ) is monotically decreasing
when ni increases.
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IR Absorption in the canonical ensemble

Consider the case of a set of harmonic oscillators. {n} is the
collection of vibrational quantum numbers.

We note P({n};T ) the probability to obtain a given set of vibrational
quantum numbers at temperature T . We have:

P({n};T ) =

g
∏

i=1

e−βni~ωi [1− e−β~ωi ] (49)

The absorption cross-section, at a fixed temperature β is:

S(a)(ω,T ) =

g
∑

i=1

∞
∑

ni=0

σni→ni+1(ωi )P({n};T ) δ(ω − ωi) (50)
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IR emission Cascade / Thermal pproximation

In the harmonic approximation, the rate of IR radiative desexcitation
by spontaneous emission for an oscillator of pulsation ωi from a

vibrational state | n > towards | n− 1 >, noted A
(n→n−1)
i , satisfy

A
(n→n−1)
i = n A

(1→0)
i .

In the canonical ensemble, for each vibrational mode, we can caculate
the radiative desexcitation rate of this mode as:

ki (T ) =
∞
∑

n=1

P(n) n A
(1→0)
i

= A
(1→0)
i

∞
∑

n=1

n e−βn~ωi [1− e−β~ωi ]

=
A
(1→0)
i

eβ~ωi − 1
(51)
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IR emission Cascade / Thermal pproximation

Initial excitation of the molecular system at an energy Einit. From the
heat capacity CV(T ), we associate an initial temperature Tinit such

as Einit =

∫ Tinit

0
CV(T

′) dT ′ (thermal approximation).

In the harmonic approximation, the heat capacity is analytical and
given by:

CV(T ) = kB

g
∑

i=1

e−β~ωi

(1− e−β~ωi )2
(β~ωi )

2 (52)

We want to analyse the IR emission of the molecule down to final
temperature Tfinal. Along the cooling, temperature is discretized. We
note ∆T = (Tinit−Tfinal)

N
. We have Tk = Tinit − k∆T (avec k=0, 1,

..., N).
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IR emission Cascade / Thermal pproximation

At a temperature Tk , a variation of temperature ∆T will induce a
variation of internal energy ∆Uk .

The energy fraction in the ith mode is simply given by:

∆E
(i)
k =

ki (Tk)
∑

j kj(Tk)
∆Uk (53)

Along the radiative emission cascade, the total energy emitted in the
ith mode is written as:

∆E (i) =

N
∑

k=0

∆E
(i)
k (54)

In these thermal et harmonic approximations, the emission spectrum
will be given by:

I(e)(ω) ∝

g
∑

i=1

∆E (i)

~ωi

δ(ω − ωi) (55)
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dt’ (55)
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IR emission cascade / Time evolution

Can be solved by discretization of the time and by calculating the energy
at t +∆t from P(nj ;E (t;Einit)) at t.

For each vibrational mode and for each new energy E , the microcanonical
probability P(nj ,E ) has to be computed.

To simplify, we can use here the thermal approximation (P(nj ,T ) with T

for which E =
∫ T

0 CV(T
′) dT ′).

From the time evolution of the internal molecular energy [E (t;Einit], we
can obtain the time resolved IR emission spectrum.

The number of emitted IR photons, per initially excited molecule, in the
jth vibrational mode during T is written as:

Nj(T ) = A
(1→0)
j

∫ T

0

∞
∑

nj=1

njP(nj ;E (t
′;Einit))dt

′

(56)
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IR emission cascade / Time evolution

Experimentally, the emission spectra are obtained in a given time windows
(100-101 µs). We note Texp this experimental time.

In the harmonic approximation, the emission spectrum, integrated over
Texp, is written as:

I(ω;Einit,Texp) =

g
∑

j=1

δ(ω − ωj)A
(1→0)
j

× [

∫ Texp

0
{

∞
∑

nj=1

njP(nj ;E (t
′;Einit))}dt

′] (57)

This emission spectrum depends parametrically of Einit and Texp.

In a ns laser experiment, Einit is perfectly defined if the initial thermal
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IR emission cascade/ Kinetic Monte-Carlo

For a given internal energy of the molecule, we can define for the jth
oscillator:

Aj(E ) =

N
(j)
max
∑

nj=1

P(nj ;E )A
(nj→nj−1)
j

= A
(1→0)
j

N
(j)
max
∑

nj=1

njP(nj ;E ) (58)

with N(j)
max =

E

~ωj

.

For this molecule, there are g channels of radiative desexcitation. The
probability to loose one vibrational quantum in the jth vibrational mode is
given by:

Pj(E ) =
Aj(E )

∑g
k=1 Ak(E )

(59)
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Kinetic Monte-Carlo

The previous simulation approach, for a non linear triatomic mollecule, can
be summarized as:

χ1

χ2

t = 0

t ′ = t + 1∑
i Ai (E)

t ′′ = t ′ + 1∑
i Ai (E ′)

p1(E ) p2(E ) p3(E )

0 1

E ′ = E − hν1

E ′′ = E ′ − hν3 ...

p1(E
′) p2(E

′) p3(E
′)

0 1

Possible to take into account anharmonicity ....
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Kinetic Monte-Carlo

Obvious extension for the IR Emission IR/Dissociation/Isomerization
competition

XnYm(a)

XnYm(b)

IR emission

IR emission

XnYm−1(a
′) + Y

XnYm−1(b
′) + Y

Xm−2Ym−1(a
′′) + X2Y (b′′)

pi (E ) =
ki (E)∑
j kj (E)
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Thank you for your attention !
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