ISm0

Intramolecular dynamics from statistical theories

Pascal Parneix ${ }^{1}$

Institut des Sciences Moléculaires d'Orsay
Université Paris-Sud, Orsay
August 28, 2019

Introduction

Introduction

- Dynamics in the short time (sub-ps) is governed by non adiabatic couplings. Dynamics in the excited states.
- Following this electronic relaxation, the molecule can be found in the fundamental electronic state.
- In this course, we will focalize on the competition between different relaxation processes, may be sequential, of the system in this ground electronic state:
- Dissociation
- Isomerisation
- IR Emission
- Following dynamics of a molecular system over a long time is really a challenge both for experimentalists and theoreticians.

Introduction

"Complex" molecular systems have some common properties:

- Potential Energy Surface (PES) is characterized by a large number of local minima (isomers) and extrema (saddle points).
- Anharmonicity of the PES
- Characteristics times of different processes on different orders of magnitude [coexistence of short time (ps-ns) and long time (ms-s) dynamics].
- Molecular system with a large number of freedom. Difficult to follow the time evolution by solving Schrödinger equation.

Introduction

Born-Oppenheimer adiabatic approximation is generally used to compute electronic states.

- The molecular hamiltonian can be written as:

$$
\begin{equation*}
\mathcal{H}=\mathcal{T}(\mathbf{p})+\mathcal{T}(\mathbf{P})+\mathcal{U}(\mathbf{r}, \mathbf{R}) \tag{1}
\end{equation*}
$$

- In this expression, \mathbf{r} is the set of the electronic coordinates, \mathbf{R} is the set of the nuclear coordinates. \mathbf{p} and \mathbf{P} are the momenta linked to \mathbf{r} and \mathbf{R}, respectively.

Introduction

- As the nuclei masses are larger of electrons, the electronic wavefunctions $\varphi_{e}^{(n)}(\mathbf{r} ; \mathbf{R})$ can be computed by fixing molecular geometry (adiabatic approximation).
- These electronic wave functions depend parametrically on the nuclear positions. For each value of \mathbf{R}, the schrödinger equation is solved:

$$
\begin{equation*}
[\mathcal{T}(\mathbf{p})+\mathcal{U}(\mathbf{r}, \mathbf{R})] \varphi_{e}^{(n)}(\mathbf{r} ; \mathbf{R})=V_{n}(\mathbf{R}) \varphi_{e}^{(n)}(\mathbf{r} ; \mathbf{R}) \tag{2}
\end{equation*}
$$

Introduction

- The function $V_{n}(\mathbf{R})$ corresponds to the electronic energy for the $\mathrm{n}^{\text {ème }}$ adiabatic electronic state.
- For each electronic state, we will have a function of whole of the nuclear coordinates called Potential Energy Surface (PES).
- By the following, we will work on the ground PES $V(\mathbf{R})$.
- At the vicinity of a local minimum \mathbf{R}_{e}, the PES can be expressed as:

$$
V(\mathbf{R})=V\left(\mathbf{R}_{e}\right)+\left(\mathbf{R}-\mathbf{R}_{e}\right)^{t} H_{\mathrm{h}}\left(\mathbf{R}-\mathbf{R}_{e}\right)+\ldots
$$

with H_{h} the Hessian matrix.

- On this PES, classical dynamics of the nuclei can be simulated.

Introduction

- Different methods can be used for the calculation of the PES
$V\left(\vec{R}_{1}, \ldots, \vec{R}_{n}\right)$:
(1) Atomistic model
- ab-initio PES. Based on the calculation of the electronic wavefunction (or the electronic density).
- Semi-empirical PES (TB, DFTB, ...)
- Non reactive empirical PES (AMBER, CHARMM, ...)
- Reactive empirical PES (AIREBO, REAX)
(2) Coarse grained model
- This choice will be mainly governed by:
- The size and the nature of the molecular system
- The characteristics time of the microscopic phenomena
- The quality of the PES sampling

Introduction

Figure: An example of Potential energy surface.

Introduction

- Why exploring this PES ?
- Important to find local minima and extrema which play a crucial role in the dynamics.
- Following the time evolution of a given physical observable versus of E , T, ...
- Understanding thermodynamics of the system ...
- Understanding the reactional dynamics along a given path $\lambda(\mathbf{R})$.
- How to properly explore this PES ?
- Exploration of the phase space. Dynamics in the (NVE), (NVT) statistical ensembles, ... Time average of physical observables.
- Exploration of the configuration space in different statistical ensembles. Ensemble average of physical observables.
- Problem of ergodicity $\ldots . \rightarrow$ Numerical strategies to follow.

Introduction

- Molecular dynamics simulations in the (NVE) ensemble
(1) Propagation of Hamilton's equations

$$
(\mathbf{R}(t), \mathbf{P}(t))
$$

(2) Perfectly adapted to follow the time evolution of physical properties as a function of time

$$
A(t) \equiv A(\mathbf{R}(t)) \text { et }\langle A\rangle_{t}=\frac{1}{N} \sum_{i=1}^{N} A\left(t_{i}\right)
$$

(3) Allow to compute rate constants for different processes (isomerisation, dissociation, ...) from different initial conditions.

But ...

- The gradient of the PES has to be computed.
- Difficult to extract information on rare events and/or for systems with $N \gg 1$. The accessible characteristics times depend on the complexity of the PES.

Competition between isomerization, fragmentation and IR emission

Fragmentation

Fragmentation

Introduction

- Following the non-adiabatic dynamics, the molecule can be found in the electronic ground state. A statistical approach could be used if $T_{\text {IVR }} \ll T_{\text {disso }}$.
- The characteristics time of dissociation $T_{\text {disso }}$ will depend on:
- Internal energy (or temperature)
- Dissociation energy
- The number of degrees of freedom
- In the framework of statistical theories, the density of states will naturally play an important role.

RRK theory

- One simple model for a molecular dissociation of the parent $X_{n}(\rightarrow$ $\mathrm{X}_{n-1}+\mathrm{X}$) is to consider X_{n} as a set of harmonic oscillators, following the idea of Rice, Ramsperger et Kassel. The molecule will be considered as dissociated when the localized energy on a given mode will be larger than the dissociation energy.
- We note $g=3 n-6$ the number of degrees of freedom of the parent molecule. Let us computing the probability $P(E)$ for that E to be localized in a dissociative mode, will be larger than the dissociation energy D_{n}.
- The number of possibilities to distribute E over g oscillators is given by $E^{g-1} /(g-1)$!.

RRK theory

- The probability $P(E)$ is thus given by:

$$
\begin{align*}
P(E) & =\frac{\int_{0}^{E-D_{n}} \epsilon^{g-2} d \epsilon /(g-2)!}{E^{g-1} /(g-1)!} \\
& =\left(\frac{E-D_{n}}{E}\right)^{g-1} \tag{3}
\end{align*}
$$

- The dissociation constant $k_{d}^{(n)}(E)$ is proportional to this probability. We thus obtain:

$$
\begin{equation*}
k_{d}(E)=\nu_{0}\left(\frac{E-D_{n}}{E}\right)^{g-1} \tag{4}
\end{equation*}
$$

- The ν_{0} prefactor is generally fitted to reproduce experimental results. Only the reactant is taken into account in this approach.
- Kassel has proposed a quantal version, much more adapted for small systems and/or at low energy.

RRKM Theory

- Notion of transition state.
- Separation between nuclear and electronic degrees of freedom. Nuclear dynamics on a PES.
- There is a critical surface which separates reactant and produit.
- Hypothesis of "non retour".
- In this approach, the dissociation rate is directly linked to the flux of trajectories through the critical surface. One of the major difficulty is to properly localize the transition state.
- Also based on the quasi-equilibrium hypothesis:
- Energy redistribution much more rapid than the dissociation reaction.
- Separability at the transition state: 1 dissociation coordinate + spectator modes.
- Energy equipartition in the spectator modes at the transition state.

RRKM Theory

- We note D_{n} the energy of the transition state. We note v the derivative with respect time of the reaction coordinate at the TS. It thus simply corresponds to the velocity at the TS.
- We note E_{t}^{\dagger} the kinetic energy along the reaction coordinate at the TS.
- The RRKM dissociation constant can be written:

$$
\begin{equation*}
k_{d}(E) \propto v \frac{\Omega^{\dagger}\left(E^{\dagger}\right)}{\Omega_{n}(E)} \tag{5}
\end{equation*}
$$

with $E^{\dagger}=E-D_{n}$ the energy available at the transition state.

RRKM Theory

- The density of states Ω^{\dagger} at the transition state is written as:

$$
\begin{equation*}
\Omega^{\dagger}\left(E^{\dagger}\right)=\sum N\left(E_{v}^{\dagger}\right) \rho\left(E_{t}^{\dagger}\right) \tag{6}
\end{equation*}
$$

- As $\rho\left(E_{t}^{\dagger}\right) \propto E_{t}^{\dagger-1 / 2}$ and $v \propto \sqrt{E_{t}^{\dagger}}$, we obtain:

$$
\begin{equation*}
k_{d}(E) \propto \frac{N^{\dagger}(E)}{h \Omega_{n}(E)} \tag{7}
\end{equation*}
$$

with $N^{\dagger}(E)=\sum N\left(E_{v}^{\dagger}\right)$ the number of vibrational states for the spectator modes which can be populated at the TS.

RRKM theory

- For a system with a large number of degrees of freedom, we can write:

$$
\begin{equation*}
N^{\dagger}(E)=\int_{0}^{E-D_{n}} \Omega^{\dagger}\left(E-D_{n}-\varepsilon\right) d \varepsilon \tag{8}
\end{equation*}
$$

- The RRKM dissociation rate can be written as:

$$
\begin{equation*}
k_{d}(E)=\int_{0}^{E-D_{n}} \mathcal{R}(\varepsilon ; E) d \varepsilon \tag{9}
\end{equation*}
$$

with,

$$
\begin{equation*}
\mathcal{R}(\varepsilon ; E)=\frac{\Omega^{\dagger}\left(E-D_{n}-\varepsilon\right)}{h \Omega_{n}(E)} \tag{10}
\end{equation*}
$$

- $\mathcal{R}(\varepsilon ; E) d \varepsilon$ corresponds to the dissociation rate for a given kinetic energy ε along the dissociative coordinate.

RRKM theory

- The probability density for the kinetic energy can be deduced:

$$
\begin{equation*}
f(\varepsilon ; E)=\frac{\Omega^{\dagger}\left(E-D_{n}-\varepsilon\right)}{\int_{0}^{E-D_{n}} \Omega^{\dagger}\left(E-D_{n}-\varepsilon\right) d \varepsilon} \tag{11}
\end{equation*}
$$

- In the harmonic limit of the RRK theory, we find:

$$
\begin{equation*}
k_{d}(E)=\frac{\prod_{i=1}^{3 n-6} \nu_{i}}{\prod_{i=1}^{3 n-7} \nu_{i}^{\dagger}}\left(\frac{E-D_{n}}{E}\right)^{3 n-7} \tag{12}
\end{equation*}
$$

- The averaged kinetic energy is thus given by:

$$
\begin{align*}
\langle\varepsilon\rangle & =\int_{0}^{E-D_{n}} \varepsilon f(\varepsilon) d \varepsilon \\
& =\frac{E-D_{n}}{3 n-6} \tag{13}
\end{align*}
$$

Weisskopf theory

- The $\operatorname{RRK}(M)$ theories only consider the dissociation with respect to the "parent" molecule.
- The Weisskopf theory is based on the microreversibility principle. An equilibrium between the two inverse microscopic processes (dissociation and nucleation) is assumed:

$$
\begin{equation*}
\mathrm{X}_{n} \longrightarrow \mathrm{X}_{n-1}+\mathrm{X} \text { and } \mathrm{X}_{n-1}+\mathrm{X} \longrightarrow \mathrm{X}_{n} \tag{14}
\end{equation*}
$$

- This theory has been first developed to describe the fragmentation of nuclei (nuclear physics).

Weisskopf theory

- We note k_{d} the dissociation rate for the reaction $\mathrm{X}_{n} \longrightarrow \mathrm{X}_{n-1}+\mathrm{X}$.
- We note k_{n} the nucleation rate for the reaction $\mathrm{X}_{n-1}+\mathrm{X} \longrightarrow \mathrm{X}_{n}$.
- The flux Φ_{d} linked to the dissociation is equal to $\Phi_{d}=k_{d}\left[X_{n}\right]$.
- The flux Φ_{n} linked to the nucleation is equal to $\Phi_{n}=k_{n}\left[X_{n-1}\right]$.
- From he microreversibility principle, we have $\Phi_{d}=\Phi_{n}$.
- Let us express Φ_{d}. We have:

$$
\begin{equation*}
\Phi_{d}=k_{d}(E) \Omega_{n}(E) \tag{15}
\end{equation*}
$$

with Ω_{n} the vibrational density of states for the parent X_{n}.

Weisskopf theory

- Let us now express Φ_{n}. We have:

$$
\begin{equation*}
\Phi_{n}=\int_{0}^{E-D_{n}} k_{n}(\varepsilon) \rho(\varepsilon) \Omega_{n-1}\left(E-D_{n}-\varepsilon\right) d \varepsilon \tag{16}
\end{equation*}
$$

- In this last equation, Ω_{n-1} is the vibrational states density of the product X_{n-1}. The relative kinetic energy of the fragments is noted ε. The nucleation rate $k_{n}(\varepsilon)$ is proportional to the nucleation cross-section $\sigma(\varepsilon)$ and to v, the relative velocity of the fragments. We thus obtain:

$$
\begin{align*}
k_{n}(\varepsilon) & \propto v \sigma(\varepsilon) \\
& \propto \varepsilon^{1 / 2} \sigma(\varepsilon) \tag{17}
\end{align*}
$$

- $\rho(\varepsilon)\left(\propto \varepsilon^{1 / 2}\right)$ is the density of translational states.

Weisskopf theory

- We thus obtain:

$$
\begin{equation*}
k_{d}(E) \propto \frac{\int_{0}^{E-D_{n}} \varepsilon \sigma(\varepsilon) \Omega_{n-1}\left(E-D_{n}-\varepsilon\right) d \varepsilon}{\Omega_{n}(E)} \tag{18}
\end{equation*}
$$

- The kinetic energy (ε) probability density is written as:

$$
\begin{equation*}
f(\varepsilon ; E)=\frac{\varepsilon \sigma(\varepsilon) \Omega_{n-1}\left(E-D_{n}-\varepsilon\right)}{\int_{0}^{E-D_{n}} \varepsilon \sigma(\varepsilon) \Omega_{n-1}\left(E-D_{n}-\varepsilon\right) d \varepsilon} \tag{19}
\end{equation*}
$$

- This model is generally used in the approximation of a cross-section independent of the kinetic energy (hard sphere model).

Weisskopf theory

- In this case and considering harmonic vibrational density of states, we obtain:

$$
\begin{equation*}
k_{d}(E) \propto \frac{\left(E-D_{n}\right)^{3 n-8}}{E^{3 n-7}} \tag{20}
\end{equation*}
$$

and,

$$
\begin{equation*}
f(\varepsilon ; E)=(3 n-8)(3 n-9) \frac{\varepsilon\left(E-D_{n}-\varepsilon\right)^{3 n-10}}{\left(E-D_{n}\right)^{3 n-8}} \tag{21}
\end{equation*}
$$

- We thus deduce the expression of the averaged released kinetic energy:

$$
\begin{equation*}
\langle\varepsilon\rangle=\frac{2\left(E-D_{n}\right)}{3 n-7} \tag{22}
\end{equation*}
$$

Phase space theory

- The Phase Space Theory (PST) has been developed for the molecular physics by J. Light from the microreversibility principle.
- In the PST approach, conservation of the angular momentum is now taken into account:

$$
\begin{equation*}
\vec{\jmath}=\vec{\jmath}+\vec{l} \tag{23}
\end{equation*}
$$

- In the PST approach, the potential energy barrier along the dissociation coordinate is localized at the centrifugal barrier.

Phase space theory

- Let us onsider the dissociation of a molecule with an internal energy E and an angular momentum J .
- The microreversibility principle égalise les flux sortant $\Phi(E, J)$ and $\Phi^{\prime}(E, J)$ fluxes of dissociation and nucleation processes, respectively.
- The dissociation flux Φ is equal to the product of the dissociation rate k_{d} by the vibrational density of states Ω_{n} for the "parent" molecule. $S_{\text {rot }}$ is added for the rotational degeneracy of the "parent" molecule:

$$
\begin{equation*}
\Phi(E, J)=k(E, J) S_{\mathrm{rot}} \Omega_{n}\left(E-E_{\mathrm{rot}}\right) \tag{24}
\end{equation*}
$$

- In the spherical top approximation, the rotational energy of the "parent" molecule" is given by $E_{\text {rot }}=B J^{2}$, with B the rotational constant.

Phase space theory

- Consider now the nucleation process. The flux Φ^{\prime} depends on translational and rotational energies:

$$
\begin{align*}
\Phi^{\prime}\left(E-D_{n}, J\right) & =S_{\mathrm{rot}}^{\prime} \iint k^{\prime}\left(\varepsilon_{\mathrm{r}}, \varepsilon_{\mathrm{t}} ; J\right) \rho_{\mathrm{t}}\left(\varepsilon_{\mathrm{t}}\right) d \varepsilon_{\mathrm{t}} \\
& \times \Omega_{n-1}\left(E-D_{n}-\varepsilon_{\mathrm{t}}-\varepsilon_{\mathrm{r}}\right) d \varepsilon_{\mathrm{r}} \tag{25}
\end{align*}
$$

- In this expression, $S_{\text {rot }}^{\prime}$ corresponds to the rotational degereracy for the dissociation products. $\rho_{\mathrm{t}}\left(\varepsilon_{\mathrm{t}}\right)$ is the translational density of states. $k^{\prime}\left(\varepsilon_{\mathrm{r}}, \varepsilon_{\mathrm{t}} ; J\right)$ is the differential rate for that collision forms a cluster with an angular momentum J with kinetic energies ε_{r} and ε_{t}.

Phase space theory

- We obtain the expression of the differential rate of dissociation as a function of the total released kinetic energy $\varepsilon_{\mathrm{tr}}=\varepsilon_{\mathrm{t}}+\varepsilon_{\mathrm{r}}$:

$$
\begin{equation*}
\mathcal{R}\left(\varepsilon_{\mathrm{tr}} ; E, J\right)=\frac{S_{\mathrm{rot}}^{\prime}}{S_{\mathrm{rot}}} \frac{\Omega_{n-1}\left(E-D_{n}-\varepsilon_{\mathrm{tr}}\right) \Gamma_{\mathrm{rot}}\left(\varepsilon_{\mathrm{tr}}, J\right)}{\Omega_{n}\left(E-E_{\mathrm{rot}}\right)} \tag{26}
\end{equation*}
$$

- In this equation, the rotational density of states $\Gamma_{\text {rot }}$ corresponds to the number of available rotational states for given values of J and $\varepsilon_{\mathrm{tr}}$.

Phase space theory

- We can deduce the expression of the probability density for $\varepsilon_{\mathrm{tr}}$ as:

$$
\begin{align*}
f\left(\varepsilon_{\mathrm{tr}} ; E, J\right) & =\frac{\mathcal{R}\left(\varepsilon_{\mathrm{tr}} ; E, J\right)}{\int_{\varepsilon_{\mathrm{tr}}}^{E-\min _{n}} \mathcal{R}\left(\varepsilon_{\mathrm{tr}} ; E, J\right) d \varepsilon_{\mathrm{tr}}} \\
& =\frac{\Omega_{n-1}\left(E-D_{n}-\varepsilon_{\mathrm{tr}}\right) \Gamma_{\mathrm{rot}}\left(\varepsilon_{\mathrm{tr}}, J\right)}{\int_{\varepsilon_{\mathrm{tr}}}^{\left.E-D_{n}\right)} \Omega_{n-1}\left(E-D_{n}-\varepsilon_{\mathrm{tr}}\right) \Gamma_{\mathrm{rot}}\left(\varepsilon_{\mathrm{tr}}, J\right) d \varepsilon_{\mathrm{tr}}} \tag{27}
\end{align*}
$$

- We have to compute $\Gamma_{\text {rot }}\left(\varepsilon_{\text {tr }}, J\right)$ and $\varepsilon_{\text {tr }}^{(\min)}$ by taking into account constraints linked to energy and angular momentum.
- In the PST approach, we can also obtain the distributions $f\left(\varepsilon_{t} ; E, J\right)$ and $f\left(J_{r} ; E, J\right)$.
mixtes Lennard-Jones cluster KrXe_{12}
Competition entre ejection of Kr and Xe

Mixed Lennard-Jones

 KrXe_{12} clusters

Isomerization

Isomerization

Transition state theory

- The isomerization rate constant from isomer i towards isomer j , noted $k_{i \rightarrow j}^{\left(t_{i j}\right)}$, dépends on the statistical properties of isomer i and of the saddle point which connects both isomers.
- This isomerization rate constant can be written as:

$$
\begin{equation*}
k_{i \rightarrow j}^{\left(t_{i j}\right)}(E)=\frac{1}{h} \frac{N^{\left(t_{i j}\right)}(E)}{\Omega_{i}(E)} \tag{28}
\end{equation*}
$$

In this expression, $N^{\left(t_{i j}\right)}(E)$ corresponds to the number of available states at energy E for the transition state. $N^{\left(t_{i j}\right)}$ is given by:

$$
\begin{equation*}
N^{\left(t_{i j}\right)}(E)=\int_{V^{\left(t_{i j}\right)}}^{E} \Omega^{\left(t_{i j}\right)}(\epsilon) d \epsilon \tag{29}
\end{equation*}
$$

with $V^{\left(t_{i j}\right)}$ the potential energy of the saddle point and $\Omega^{\left(t_{i j}\right)}(\epsilon)$ the density of states for the transition state at the energy ϵ.

Transition state theory

Transition state theory

- The isomerization rate from isomer j towards isomer i, noted $k_{j \rightarrow i}^{\left(t_{i j}\right)}$, is written as:

$$
\begin{equation*}
k_{j \rightarrow i}^{\left(t_{i j}\right)}(E)=\frac{1}{h} \frac{N^{\left(t_{i j}\right)}(E)}{\Omega_{j}(E)} \tag{30}
\end{equation*}
$$

- The equilibrium between these two isomers can be easily deduced. The population ratio, for a microcanonical energy E, is given by:

$$
\begin{equation*}
\frac{N_{i}}{N_{j}}=\frac{k_{j \rightarrow i}^{\left(t_{i j}\right)}(E)}{k_{i \rightarrow j}^{\left(t_{i j}\right)}(E)}=\frac{\Omega_{i}(E)}{\Omega_{j}(E)} \tag{31}
\end{equation*}
$$

- This ratio is independent of the transition state.

Transition state theory

- The transition state linked to two isomers will be a saddle point of the PES.
- We note $\left\{Q^{(e)}\right\}$ the molecular geometry at the saddle point. In the vicinity of this saddle point, we can express the potential energy as:

$$
\begin{equation*}
V(\{Q\})=V\left(\left\{Q^{(e)}\right\}\right)+\frac{1}{2!} \sum_{i} \lambda_{i}\left(Q_{i}-Q_{i}^{(e)}\right)^{2} \tag{32}
\end{equation*}
$$

- We will have (g-1) positive eigenvalues and one negative, noted λ_{α}. We note \vec{u}_{α} the eigenvector associated to the negative eigenvalue.
- Parallel and anti-parallel displacements to this eigenvector and we minimize the PES to find the two local minima locaux linked to this saddle point.

Transition state theory

- In the harmonic limit, $\Omega_{i}(E) \mathrm{s}$ given by:

$$
\begin{equation*}
\Omega_{i}(E)=\frac{E^{g-1}}{(g-1)!\left(h \bar{\nu}^{(\mathrm{i})}\right)^{g}} \tag{33}
\end{equation*}
$$

with $\bar{\nu}^{(\mathrm{i})}$ the geometrical average of the vibrational frequencies for
isomer i , defined as $h \bar{\nu}^{(\mathrm{i})}=\left\{\prod_{k=1}^{g} h \nu_{k}^{(\mathrm{i})}\right\}^{1 / g}$.

- For the transition state, $N^{\left(t_{i j}\right)}(E)$ is given by:

$$
\begin{equation*}
N^{t_{i j}}(E)=\int_{V^{\left(t_{i j}\right)}}^{E} \frac{\epsilon^{g-2}}{(g-2)!\left(h \bar{\nu}^{\left(\mathrm{t}_{\mathrm{ij}}\right)}\right)^{g-1}} d \epsilon \tag{34}
\end{equation*}
$$

- As different transition states can connect two same isomers, we have:

$$
\begin{equation*}
W_{i j}(E)=\sum_{t_{i j}} k_{i j}^{\left(t_{i j}\right)}(E) \tag{35}
\end{equation*}
$$

Isomerization dynamics

- From the \tilde{W} matrix, we can easily build the master equations allowing to describe isomerization for a large molecular system with a large number of isomers and saddle points.
- We note $P_{i}(t ; E)$ the probability for the system to be in isomer i at t. The equations of evolution for the system can be written as:

$$
\begin{equation*}
\frac{d P_{i}(t ; E)}{d t}=\sum_{j=1}^{N_{\text {iso }}} \omega_{i j}(E) P_{j}(t ; E) \tag{36}
\end{equation*}
$$

with $\omega_{i j}(E)=W_{i j}(E)-\delta_{i j} \sum_{k \neq j} W_{k j}(E)$. The total number of isomers is noted $N_{\text {iso }}$.

- By numerically solving this system of coupled equations, it allows to obtain time evolution of populations $P_{i}(t ; E)$.

Isomerization dynamics

- In these molecular systems, the number of isomers can become very huge. It is thus much more useful to follow the time evolution of isomers groups.
- These isomers have to be classified in these groups following different geometrical criteria (order parameters).
- Notons A et B two isomers groups with N_{A} and N_{B} their respective populations.
- We note $K_{\text {eq }}$ the equilibrium between these two groups. We have:

$$
\begin{equation*}
K_{\mathrm{eq}}=\frac{k_{B \rightarrow A}}{k_{A \rightarrow B}}=\frac{N_{A}(\infty)}{N_{B}(\infty)} \tag{37}
\end{equation*}
$$

with $k_{A \rightarrow B}$ the isomerization rate from A towards B and $k_{B \rightarrow A}$ from B towards A.

Isomerization dynamics

- The configurational parameters $\lambda_{i}(\{Q\})$ have to be chosen to well separate the isomers bassins.

Isomerization dynamics

- Let us calculate the isomerization constant $k_{A \rightarrow B}$.
- We have:

$$
\begin{equation*}
\frac{d N_{A}}{d t}=-k_{A \rightarrow B} N_{A}+k_{B \rightarrow A} N_{B} \tag{38}
\end{equation*}
$$

- Let us note $N=N_{A}+N_{B}$. We deduce:

$$
\begin{equation*}
\frac{d N_{A}}{d t}=-\left(1+K_{\mathrm{eq}}\right) k_{A \rightarrow B} N_{A}+K_{\mathrm{eq}} k_{A \rightarrow B} N \tag{39}
\end{equation*}
$$

- We note $k=\left(1+K_{\text {eq }}\right) k_{A \rightarrow B}$ and we obtain:

$$
\begin{equation*}
\frac{N_{A}(t)}{N}=\left[\frac{N_{A}(t=0)}{N}-\frac{K_{\mathrm{eq}}}{1+K_{\mathrm{eq}}}\right] e^{-k t}+\frac{K_{\mathrm{eq}}}{1+K_{\mathrm{eq}}} \tag{40}
\end{equation*}
$$

- In this expression, $K_{\text {eq }}$ is given by the ratio of vibrational states for the two bassins A and B.

Isomerization dynamics

- By solving the master equation, we obtain $P_{i}(t)=\frac{N_{i}(t)}{N}$ for $i=1, N_{\text {iso }}$ and we thus obtain:

$$
\begin{equation*}
\frac{N_{A}(t)}{N}=\sum_{i=1}^{N_{\text {iso }}^{(A)}} P_{i}(t) \tag{41}
\end{equation*}
$$

in which $N_{\text {iso }}^{(A)}$ correspond to the number of isomers in the bassin A.

- The rate constant $k\left[=\left(1+K_{\text {eq }}\right) k_{A \rightarrow B}\right]$ can be thus deduced from a simple comparison of the two last expressions.

Isomerization dynamics

- As an example, we can analyse theoretical results on $\mathrm{Mg}^{+}-\mathrm{Ar}_{12}$.
- Question: where is localized the Mg^{+}ion (surface or volume) ? Analysis as a function of internal energy.
- 83 local minima and 137 saddle points have been considered in this work.
- Separation between the two isomer groups A (ion in volume) and B (ion at the surface) is based on the value of distance between the ion and the center of mass of the system for each isomer.
- We note d_{α} this distance for isomer α. If $d_{\alpha}<R_{\text {crit }}$, the isomer α is considered in the group A.

Isomerization dynamics

Figure:

Isomerization dynamics - Canonical ensemble

- In the transition state theory, the rate constant from isomer i to isomer \mathbf{j}, at a given inverse temperature β, can be deduced from a Laplace transformation:

$$
\begin{align*}
k_{i \rightarrow j}^{\left(t_{i j}\right)}(\beta) & =\frac{1}{Z_{i}(\beta)} \int_{0}^{\infty} \Omega_{i}(E) k_{i \rightarrow j}^{\left(t_{i j}\right)}(E) e^{-\beta E} d E \\
& =\frac{1}{Z_{i}(\beta)} \frac{1}{h} \int_{0}^{\infty} \Omega_{i}(E) \frac{N^{\left(t_{i j}\right)}(E)}{\Omega_{i}(E)} e^{-\beta E} d E \\
& =\frac{1}{h} \frac{\int_{0}^{\infty} N^{\left(t_{i j}\right)}(E) e^{-\beta E} d E}{Z_{i}(\beta)} \tag{42}
\end{align*}
$$

Isomerization dynamics - Canonical ensemble

- As $N^{\left(t_{i j}\right)}(E)=0$ when $E \leq V^{t_{i j}}$, we obtain:

$$
\begin{equation*}
k_{i \rightarrow j}^{\left(t_{i j}\right)}(\beta)=\frac{1}{h} \frac{\int_{V^{\left(t_{i j}\right)}}^{\infty} N^{\left(t_{i j}\right)}(E) e^{-\beta E} d E}{Z_{i}(\beta)} \tag{43}
\end{equation*}
$$

- From an integration by parts, we obtain:

$$
\begin{align*}
k_{i \rightarrow j}^{\left(t_{i j}\right)}(\beta) & =\frac{-1}{h \beta} \frac{\left[N^{\left(t_{i j}\right)}(E) e^{-\beta E}\right]_{V^{t_{i j}}}^{\infty}-\int_{V^{t_{i j}}}^{\infty} \frac{d N^{\left(t_{i j}\right)}(E)}{d E} e^{-\beta E} d E}{Z_{i}(\beta)} \\
& =\frac{1}{h \beta} \frac{\int_{V^{\left(t_{i j}\right)}}^{\infty} \frac{d N^{\left(t_{i j}\right)}(E)}{d E} e^{-\beta E} d E}{Z_{i}(\beta)} \tag{44}
\end{align*}
$$

Isomerization dynamics - Canonical ensemble

- By definition, $\frac{d N^{\left(t_{i j}\right)}(E)}{d E}=\Omega^{\left(t_{i j}\right)}(E)$. We deduce:

$$
\begin{align*}
k_{i \rightarrow j}^{\left(t_{i j}\right)}(\beta) & =\frac{1}{h \beta} \frac{\int_{V^{\left(t_{i j}\right)}}^{\infty} \Omega^{\left(t_{i j}\right)}(E) e^{-\beta E} d E}{Z_{i}(\beta)} \\
& =\frac{1}{h \beta} \frac{Z^{\left(t_{i j}\right)}(\beta)}{Z_{i}(\beta)} \tag{45}
\end{align*}
$$

with $Z^{\left(t_{i j}\right)}(\beta)$ the partition function for the saddle point at β.

- In this last expression, the zero of energy is taken for the isomer i .

IR Emission

IR Emission

Absorption cross-section for an oscillator

- In the case of E1 transitions, the radiative transition probability between two vibrational states $|n\rangle$ et $\left|n^{\prime}\right\rangle$ is proportional to the transition moment $\left.|\langle n| \mu| n^{\prime}\right\rangle\left.\right|^{2}$.
- The dipole moment μ depends on the normal coordinate Q and can be expressed as:

$$
\begin{equation*}
\mu(Q)=\mu(Q=0)+\sum_{k} \frac{1}{k!} \frac{\partial^{k} \mu}{\partial Q^{k}} Q^{k} \tag{46}
\end{equation*}
$$

- In the harmonic approximation, the vibrational wavefunction fonctions are the Hermite polynômes. By only considering the first term in the expression of the dipole moment, we obtain:

$$
\begin{equation*}
\left.|\langle n| \mu| n+1\rangle\left.\right|^{2}=(n+1)|\langle 0| \mu| 1\right\rangle\left.\right|^{2} \tag{47}
\end{equation*}
$$

Microcanonical distribution $\mathcal{P}\left(n_{i} ; E\right)$

- Let us calculate the probability $\mathcal{P}\left(n_{i} ; E\right)$ to have n_{i} vibrational quanta in the $i^{\text {ème }}$ mode at energy E.
- The energy $E-n_{i} \hbar \omega_{i}$ has to be shared on the $(g-1)$ other vibrational modes.
- We note $\Omega_{i}^{\prime}(E)$ the vibrational density of states for these ($\left.\mathrm{g}-1\right)$ harmonic oscillators. The number of vibrational modes between E and $E+d E$ is equal to $\Omega_{i}^{\prime}(E) d E$.
- The probability $\mathcal{P}\left(n_{i} ; E\right)$ is thus given by:

$$
\begin{equation*}
\mathcal{P}\left(n_{i} ; E\right)=\frac{\Omega_{i}^{\prime}\left(E-n_{i} \hbar \omega_{i}\right)}{\Omega(E)} \tag{48}
\end{equation*}
$$

- For a given energy, the probability $\mathcal{P}\left(n_{i} ; E\right)$ is monotically decreasing when n_{i} increases.

IR Absorption in the canonical ensemble

- Consider the case of a set of harmonic oscillators. $\{n\}$ is the collection of vibrational quantum numbers.
- We note $\mathcal{P}(\{n\} ; T)$ the probability to obtain a given set of vibrational quantum numbers at temperature T. We have:

$$
\begin{equation*}
\mathcal{P}(\{n\} ; T)=\prod_{i=1}^{g} e^{-\beta n_{i} \hbar \omega_{i}}\left[1-e^{-\beta \hbar \omega_{i}}\right] \tag{49}
\end{equation*}
$$

- The absorption cross-section, at a fixed temperature β is:

$$
\begin{equation*}
\mathcal{S}^{(\mathrm{a})}(\omega, T)=\sum_{i=1}^{g} \sum_{n_{i}=0}^{\infty} \sigma_{n_{i} \rightarrow n_{i}+1}\left(\omega_{i}\right) \mathcal{P}(\{n\} ; T) \delta\left(\omega-\omega_{i}\right) \tag{50}
\end{equation*}
$$

IR emission Cascade / Thermal pproximation

- In the harmonic approximation, the rate of IR radiative desexcitation by spontaneous emission for an oscillator of pulsation ω_{i} from a vibrational state $\mid n>$ towards $\mid n-1>$, noted $A_{i}^{(n \rightarrow n-1)}$, satisfy $A_{i}^{(n \rightarrow n-1)}=n A_{i}^{(1 \rightarrow 0)}$.
- In the canonical ensemble, for each vibrational mode, we can caculate the radiative desexcitation rate of this mode as:

$$
\begin{align*}
k_{i}(T) & =\sum_{n=1}^{\infty} P(n) n A_{i}^{(1 \rightarrow 0)} \\
& =A_{i}^{(1 \rightarrow 0)} \sum_{n=1}^{\infty} n e^{-\beta n \hbar \omega_{i}}\left[1-e^{-\beta \hbar \omega_{i}}\right] \\
& =\frac{A_{i}^{(1 \rightarrow 0)}}{e^{\beta \hbar \omega_{i}}-1} \tag{51}
\end{align*}
$$

IR emission Cascade / Thermal pproximation

- Initial excitation of the molecular system at an energy $E_{\text {init }}$. From the heat capacity $C_{\mathrm{V}}(T)$, we associate an initial temperature $T_{\text {init }}$ such as $E_{\text {init }}=\int_{0}^{T_{\text {init }}} C_{\mathrm{V}}\left(T^{\prime}\right) d T^{\prime}$ (thermal approximation).
- In the harmonic approximation, the heat capacity is analytical and given by:

$$
\begin{equation*}
C_{\mathrm{V}}(T)=k_{B} \sum_{i=1}^{g} \frac{e^{-\beta \hbar \omega_{i}}}{\left(1-e^{-\beta \hbar \omega_{i}}\right)^{2}}\left(\beta \hbar \omega_{i}\right)^{2} \tag{52}
\end{equation*}
$$

- We want to analyse the IR emission of the molecule down to final temperature $T_{\text {final }}$. Along the cooling, temperature is discretized. We note $\Delta T=\frac{\left(T_{\text {init }}-T_{\text {final }}\right)}{N}$. We have $T_{k}=T_{\text {init }}-k \Delta T$ (avec $k=0,1$, ..., N).

IR emission Cascade / Thermal pproximation

- At a temperature T_{k}, a variation of temperature ΔT will induce a variation of internal energy ΔU_{k}.
- The energy fraction in the ith mode is simply given by:

$$
\begin{equation*}
\Delta E_{k}^{(i)}=\frac{k_{i}\left(T_{k}\right)}{\sum_{j} k_{j}\left(T_{k}\right)} \Delta U_{k} \tag{53}
\end{equation*}
$$

- Along the radiative emission cascade, the total energy emitted in the ith mode is written as:

$$
\begin{equation*}
\Delta E^{(i)}=\sum_{k=0}^{N} \Delta E_{k}^{(i)} \tag{54}
\end{equation*}
$$

- In these thermal et harmonic approximations, the emission spectrum will be given by:

$$
\begin{equation*}
\mathcal{I}^{(\mathrm{e})}(\omega) \propto \sum_{i=1}^{g} \frac{\Delta E^{(i)}}{\hbar \omega_{i}} \delta\left(\omega-\omega_{i}\right) \tag{55}
\end{equation*}
$$

IR emission cascade / Time evolution

- Can be solved by discretization of the time and by calculating the energy at $t+\Delta t$ from $\mathcal{P}\left(n_{j} ; E\left(t ; E_{\text {init }}\right)\right)$ at t.
- For each vibrational mode and for each new energy E, the microcanonical probability $\mathcal{P}\left(n_{j}, E\right)$ has to be computed.
- To simplify, we can use here the thermal approximation $\left(\mathcal{P}\left(n_{j}, T\right)\right.$ with T for which $\left.E=\int_{0}^{T} C_{\mathrm{V}}\left(T^{\prime}\right) d T^{\prime}\right)$.
- From the time evolution of the internal molecular energy $\left[E\left(t ; E_{\text {init }}\right]\right.$, we can obtain the time resolved IR emission spectrum.
- The number of emitted IR photons, per initially excited molecule, in the jth vibrational mode during T is written as:

$$
\begin{equation*}
\mathcal{N}_{j}(T)=A_{j}^{(1 \rightarrow 0)} \int_{0}^{T} \sum_{n_{j}=1}^{\infty} n_{j} \mathcal{P}\left(n_{j} ; E\left(t^{\prime} ; E_{\text {init }}\right)\right) d t^{\prime} \tag{56}
\end{equation*}
$$

IR emission cascade / Time evolution

- Experimentally, the emission spectra are obtained in a given time windows $\left(10^{0}-10^{1} \mu \mathrm{~s}\right)$. We note $T_{\exp }$ this experimental time.
- In the harmonic approximation, the emission spectrum, integrated over $T_{\exp }$, is written as:

$$
\begin{align*}
\mathcal{I}\left(\omega ; E_{\text {init }}, T_{\exp }\right) & =\sum_{j=1}^{g} \delta\left(\omega-\omega_{j}\right) A_{j}^{(1 \rightarrow 0)} \\
& \times\left[\int_{0}^{T_{\exp }}\left\{\sum_{n_{j}=1}^{\infty} n_{j} \mathcal{P}\left(n_{j} ; E\left(t^{\prime} ; E_{\text {init }}\right)\right)\right\} d t^{\prime}\right] \tag{57}
\end{align*}
$$

- This emission spectrum depends parametrically of $E_{\text {init }}$ and $T_{\exp }$.
- In a $n s$ laser experiment, $E_{\text {init }}$ is perfectly defined if the initial thermal

IR emission cascade/ Kinetic Monte-Carlo

- For a given internal energy of the molecule, we can define for the jth oscillator:

$$
\begin{align*}
A_{j}(E) & =\sum_{n_{j}=1}^{N_{\max }^{(j)}} \mathcal{P}\left(n_{j} ; E\right) A_{j}^{\left(n_{j} \rightarrow n_{j}-1\right)} \\
& =A_{j}^{(1 \rightarrow 0)} \sum_{n_{j}=1}^{N_{\max }^{(j)}} n_{j} \mathcal{P}\left(n_{j} ; E\right) \tag{58}
\end{align*}
$$

with $N_{\max }^{(j)}=\frac{E}{\hbar \omega_{j}}$.

- For this molecule, there are g channels of radiative desexcitation. The probability to loose one vibrational quantum in the j th vibrational mode is given by:

$$
\begin{equation*}
\mathcal{P}_{j}(E)=\frac{A_{j}(E)}{\sum_{\text {Ecole d'été GDR EMIE et UP }}^{g} A_{1}(E)} \tag{59}
\end{equation*}
$$

Kinetic Monte-Carlo

- The previous simulation approach, for a non linear triatomic mollecule, can be summarized as:

$$
\begin{aligned}
& E^{\prime}=E-h \nu_{1} \\
& \\
& E^{\prime \prime}=E^{\prime}-h \nu_{3} \ldots \\
& t^{\prime \prime}=t^{\prime}+\frac{1}{\sum_{i} A_{i}\left(E^{\prime}\right)}
\end{aligned}
$$

- Possible to take into account anharmonicity

Kinetic Monte-Carlo

- Obvious extension for the IR Emission IR/Dissociation/Isomerization competition

$$
\begin{gathered}
X_{n} Y_{m-1}\left(a^{\prime}\right)+Y \\
X_{n} Y_{m-1}\left(b^{\prime}\right)+Y \underset{X_{n}}{\longleftrightarrow} Y_{m}(a) \longrightarrow \text { IR emission } \\
X_{n} Y_{m}(b) \longrightarrow \text { IR emission } \\
X_{m-2} Y_{m-1}\left(a^{\prime \prime}\right)+X_{2} Y\left(b^{\prime \prime}\right) \\
p_{i}(E)=\frac{k_{i}(E)}{\sum_{j} k_{j}(E)}
\end{gathered}
$$

Thank you for your attention!

